Pediatrician's Role in Caring for Late Preterm and Early Term Neonates

Ashok Kumar *MD, FIAP, FNNF, FAMS*Professor & Former Head
Department of Pediatrics
Professor Incharge Neonatal Unit
Banaras Hindu University
Varanasi

Objectives

- Definitions of late preterm & early term
- Magnitude of the problem
- Health problems of these infants
- General principals of management
- Prevention

Late Preterm-Definition

Gestational age 34-0/7 to 36-6/7 wk

Earlier they were known as near term

Near Term vs late Preterm

Near Term	Late Preterm
Maturity	Physiologic & metabolic immaturity
Similar risk of morbidity & mortality as in term infants	Higher risk of morbidity & mortality compared to term infants

Term Pregnancy

- Term pregnancy extends from 37-0/7 wk to 41-6/7 wk
- Earlier it was thought that that the outcome is uniform and good across 5 weeks' gestation in term pregnancy

Defining Term Pregnancy

JAMA 2013; 309: 2445

- ▶ Early Term: 37 0/7 wk 38 6/7 wk
- ▶ Full Term: 39 0/7 wk 40 6/7 wk
- ▶ Late Term: 41 0/7 wk- 41 6/7 wk
- Post Term: 42 wk and beyond

Morbidity rate (Pediatrics 2008)

Gestation (wk)	Morbidity rate (%)
38	3.3
37	5.9
36	12.5
35	25
34	51.2

Percent distribution of preterm births: United States, 2005

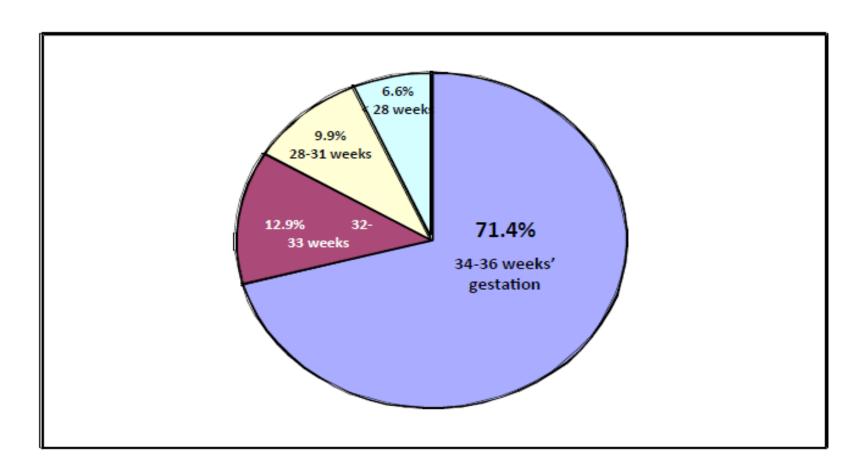


Figure 1. Birth rates at 34, 35, 36, and total 34 to 36 weeks of gestation: United States, 1990–2006

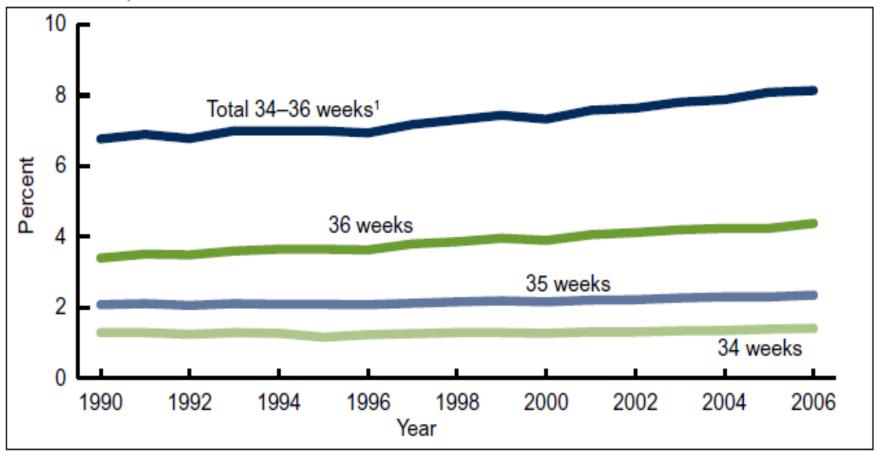


Figure 2. Late preterm birth rates by age of mother: United States, 1990, 2000, and 2006

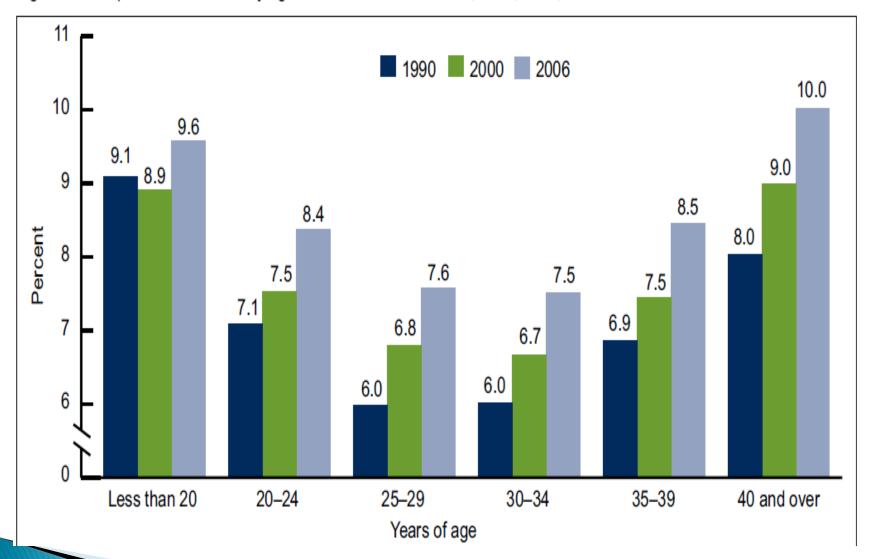
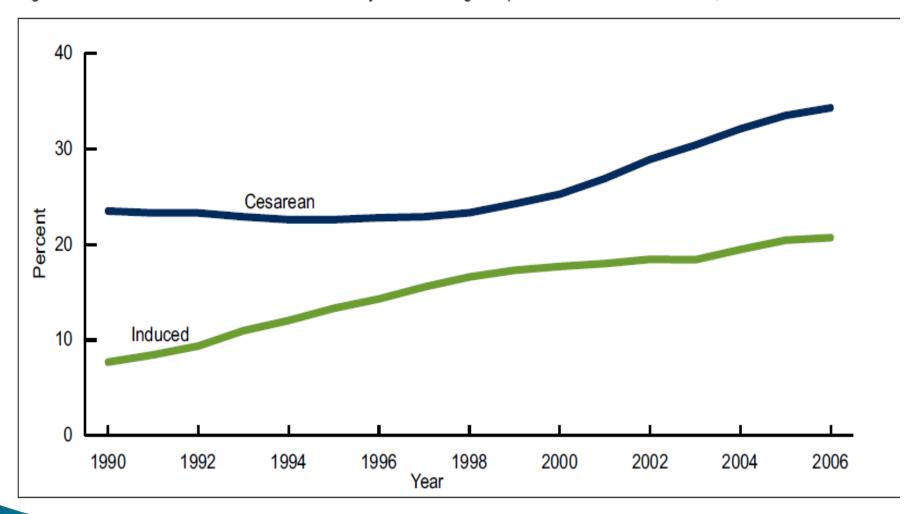



Figure 5. Induction of labor and cesarean delivery rates among late preterm births: United States, 1990–2006

Etiology of Late Preterm and Early Term Births (*Pediatrics 2006;118;1207–14*)

- Increasing maternal age
- Fertility treatment
- Multiple births
- C-section
- Increasing maternal obesity
- Maternal comorbid conditions
- Non medical reasons
- Inaccurate gestational age

Risks of Late Preterm & Early Term Births

١	NICU admission	■Excessive weight loss		
	Respiratory morbidities- TTN/RDS/Apnea/Respiratory failure	Sepsis		
	Temperature instability	Neurological morbidities		
	Hypoglycemia	Longer hospital stay		
	Hyperbilirubinemia	Hospital readmission		
	Feeding difficulties	Neonatal and infant mortality		

Respiratory Morbidity (JAMA 2010; 304; 423)

aOR

Gest. wk	RDS	TTN	Pneum onia	Resp Failure	Surfact ant	Ventila tor	Oscillat or
39-40	1	1	1	1	1	1	1
38	1.1	1	0.9	1.4	1.1	1.2	0.9
37	3.1	2.5	1.7	2.8	4.8	2.8	2.8
36	9.1	6.1	3.6	6.2	16.1	7.3	7.1
35	21.9	11.1	6.6	4.9	35.2	9.8	12.3
34	41.1	14.7	7.6	10.5	58.5	13.9	18.8

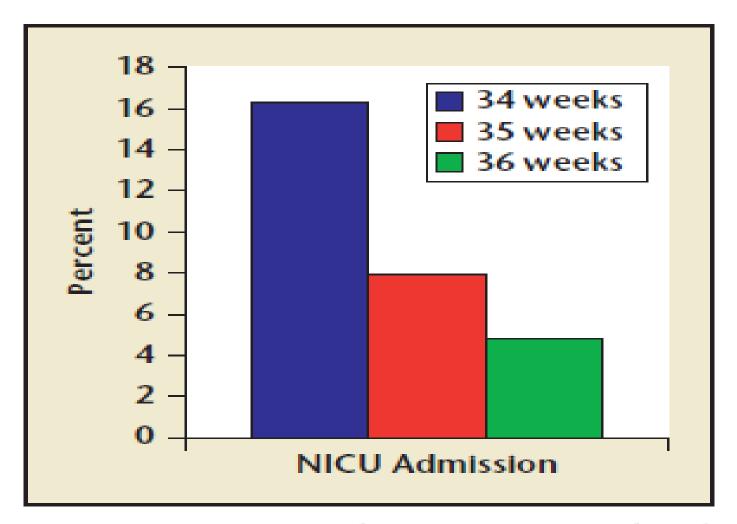


Figure 2. Rate of neonatal intensive care unit (NICU) admission by gestational age.

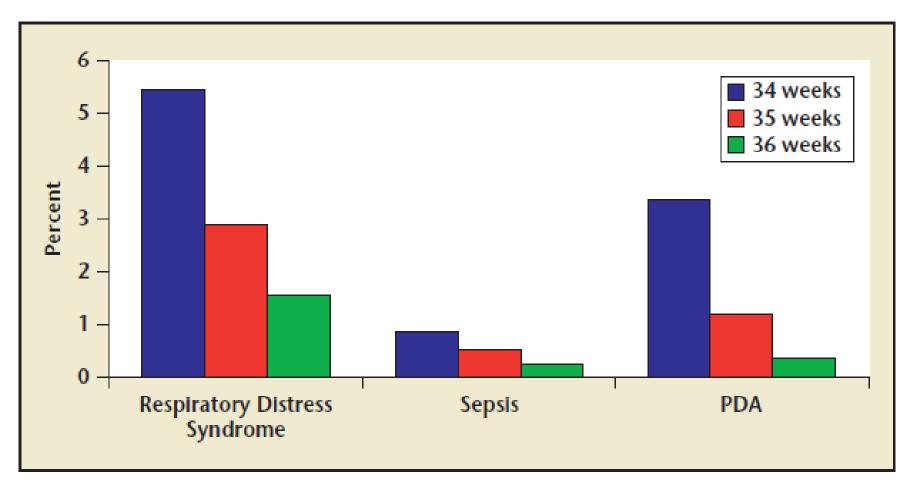
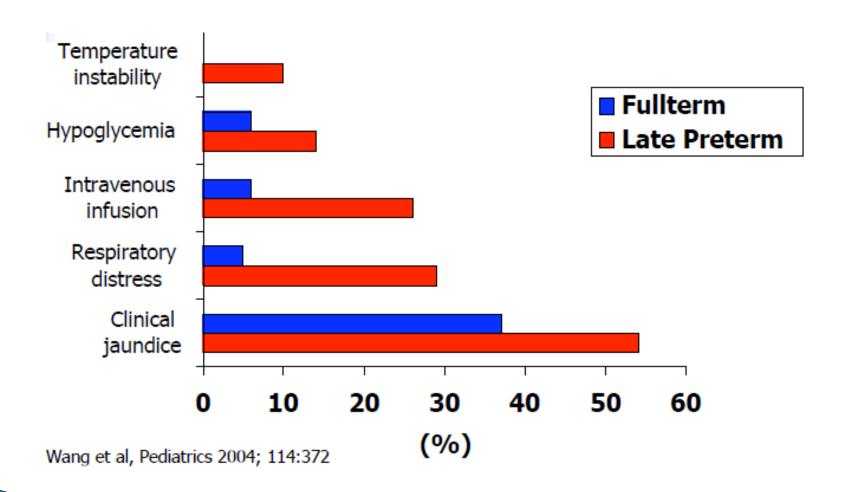



Figure 1. Rate of respiratory distress, sepsis, and patent ductus arteriosus (PDA) by gestational age.

Morbidity in Late Preterm

Mortality Rates in Late Preterms & Early Term

Gestational Age,	Neonatal Mortality		Infant Mortality	
Weeks	Rate	RR (95% CI)	Rate	RR (95% CI)
34	7.1	9.5 (8.4-10.8)	11.8	5.4 (4.9-5.9)
35	4.8	6.4 (5.6-7.2)	8.6	3.9 (3.6-4.3)
36	2.8	3.7 (3.3-4.2)	5.7	2.6 (2.4-2.8)
37	1.7	2.3 (2.1-2.6)	4.1	1.9 (1.8-2.0)
38	1.0	1.4 (1.3-1.5)	2.7	1.2 (1.2-1.3)
39	0.8	1.00 (reference)	2.2	1.00 (reference)
40	0.8	1.0 (0.9-1.1)	2.1	0.9 (0.9-1.0)

Pediatrics 124:234-240, 2009

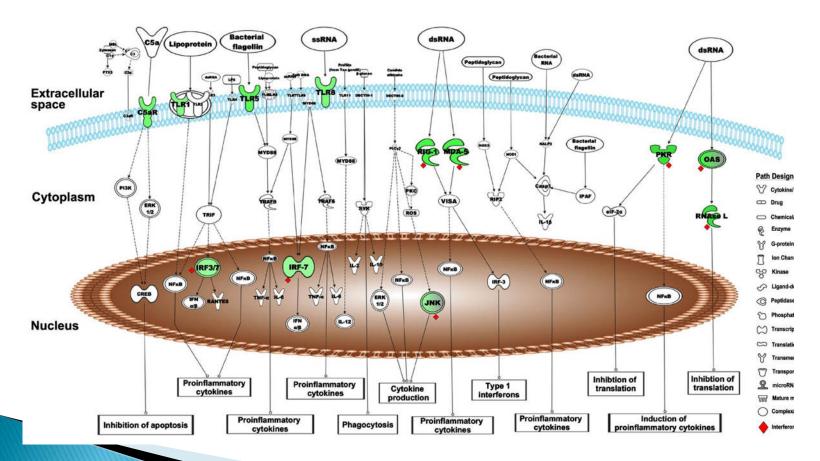
Infection

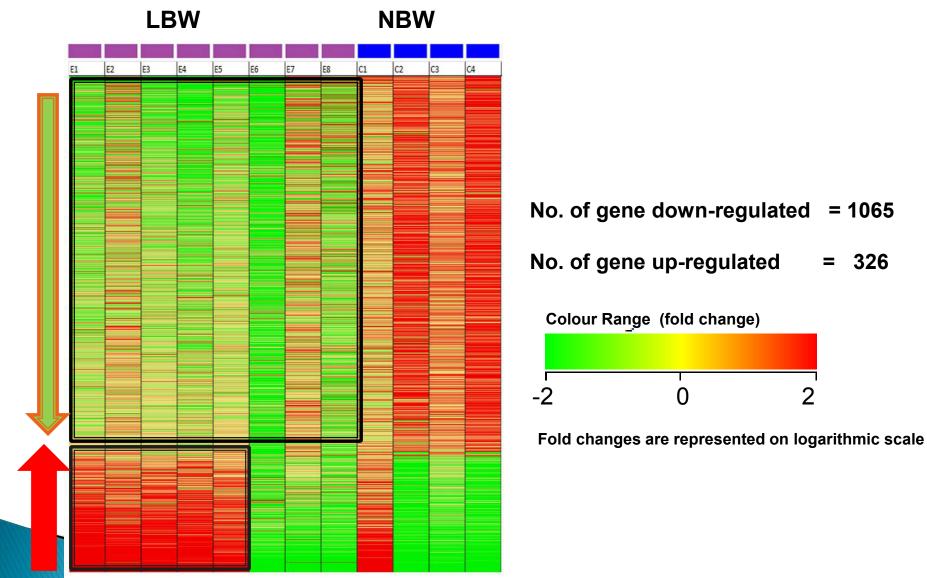
Innate immunity is not well developed

Higher risk of infections

Decreased Pattern Recognition Receptor Signaling, Interferon-Signature, and Bactericidal/Permeability-Increasing Protein Gene Expression in Cord Blood of Term Low Birth Weight Human Newborns

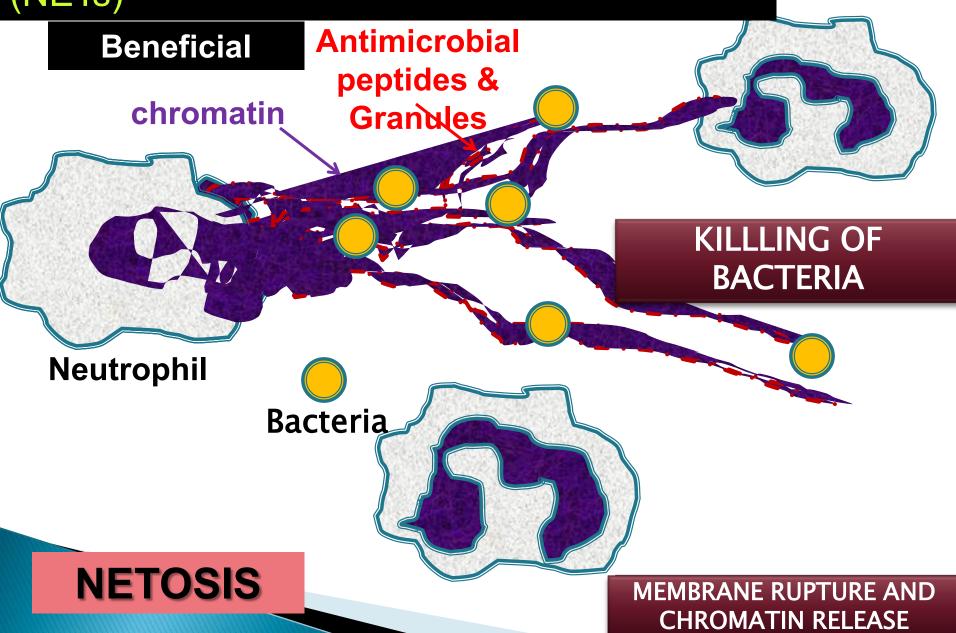
Vikas Vikram Singh¹, Sudhir Kumar Chauhan¹, Richa Rai¹, Ashok Kumar², Shiva M. Singh³, Geeta Rai¹*

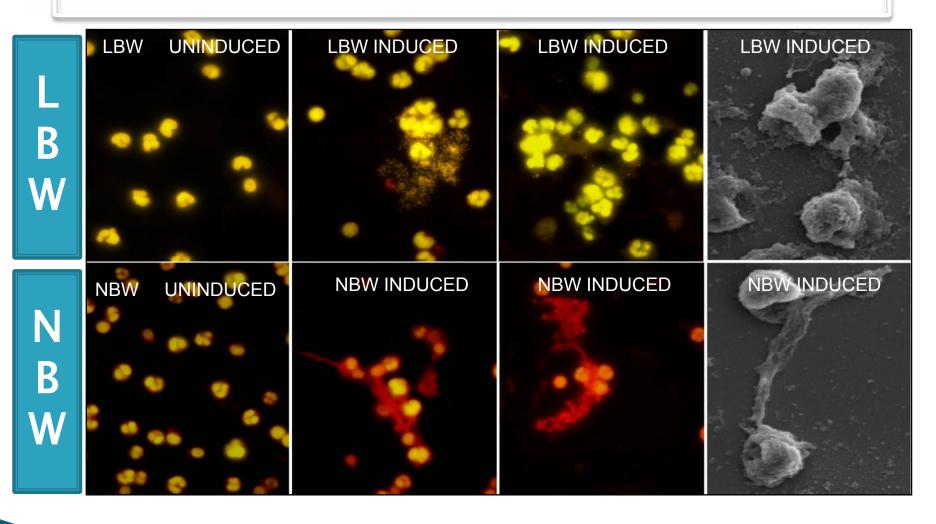

1 Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi, India, 2 Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India, 3 Department of Biology, The University of Western Ontario, London, Ontario, Canada


1. Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses

Membrane bound PRRs: C5aR, TLRs (1, 5 and 8)

Cytoplasmic PRRs: RIG-1, MDA5, PKR, OAS


Heat-Map of differentially expressed genes in LBW newborns


Singh et al, PLoS ONE, 2013

Neutrophil Functions-Defective

Netosis-neutrophil extracellular trap formation Neutrophil Extracellular Trap formation (NETs)

NETOSIS in LBW Newborns

Green: Syto 13a live cell intra-nuclear DNA stain

Red: Sytox- orange a Extracellular DNA stain

Signalling pathway which conrols Netosis is defective in LBW infants (Singh VV, Chauhan SK, Rai R, Kumar A, Rai G: Decreased toll-like receptor-4/myeloid differentiation factor 88 response leads to defective interleukin-1 beta production in term low birth weight newborn)

Pediatr Infect Dis J 2014, 33:1270-1276.

Management of Late Preterm and Early Term Infants

- Close monitoring
- The focus of care is individualized depending on the specific medical problems
- Counseling of parents about the possible morbidities, admission to NICU, prolonged birth hospitalization, and rehospitalization

Management Issues

- Delivery room resuscitation
- Temp maintenance
- Respiratory distress
- Feeding issues/hypoglycemia
- Hyperbilirubinemia
- Sepsis

Rehospitalization

- Hyperbilirubinemia
- Poor feeding
- Excessive weight loss
- Suspected sepsis

Long term management

- Education of mothers and families regarding long-term follow up
- Early intervention and developmental services may be indicated, especially for those who have problems with cognition, learning, and behavioral problems

Medical Outcomes in 20 to 36 Year Old Norwegian People By Gestational Age

	Gestational Age (%)					
	23-27 N=362	28-30 N=1 686	31-33 N=6 591	34-36 N=32 187	≥37 N= 853 309	Relative Risk 95% CI 34-36 vs ≥37
Cerebral Palsy	9.1	6.0	1.9	0.3	0.1	2.7(2.2-3.3)
Mental Retardation	4.4	1.8	1.0	0.7	0.4	1.6 (1.4-1.8)
Schizophrenia	0.6	0.1	0.2	0.2	0.1	1.3 (1.0-1.7)
Disorders of psychological development, behavior, and emotion	2.5	0.7	0.3	0.3	0.2	1.5 (1.2-1.8)
Other major disabilities	4.1	2.2	0.5	0.3	0.2	1.5 (1.2-1.8)
Any disability affecting working capacity	10.6	8.2	4.2	2.4	1.7	1.4 (1.3-1.5)

Prevention

- Avoidance of non-medically indicated delivery before 39 weeks
- Late preterm births have shown declining trend in recent years in US
- Early term births are continuing to rise
- Policy changes are needed to prevent early births

Policy Changes

- Hard-stop policy: hospital passes an order not to deliver early if it is not indicated
- Soft-stop policy: Obstetricians agree not to perform non-medically indicated delivery before 39 weeks
- Education program
- All 3 approaches were effective to reduce the rate but hard-stop policy was most effective (Am J Obstet Gynecol 2010)

 Documentation of fetal lung maturity does not justify early non-medically indicated delivery

Conclusions

- Late preterm and early term infants are physiologically and metabolically immature
- Higher risks of morbidity and mortality and long term health related rsiks
- Efforts are needed to reduce non-indicated early births

Thank you

